7776 measured reflections

 $R_{\rm int} = 0.017$

1485 independent reflections

1427 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2-Dihydrospiro[carbazole-3(4H),2'-[1,3]dioxolane]

Janni Vester Bjerrum, Trond Ulven and Andrew D. Bond*

University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense M, Denmark Correspondence e-mail: adb@chem.sdu.dk

Received 29 January 2009; accepted 16 February 2009

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.080; data-to-parameter ratio = 9.6.

In the title compound, C₁₄H₁₅NO₂, the hydrogenated sixmembered ring of the carbazole unit adopts a half-chair conformation and the dioxolane ring points to one side of the carbazole plane. Neighbouring molecules form edge-to-face interactions in which the NH group is directed towards an adjacent carbazole unit, with a shortest H...C contact of 2.72 Å. These interactions arrange the molecules into onedimensional herringbone-type motifs, which pack so that the methylene groups of the dioxolane ring lie over the face of a neighbouring carbazole unit with a shortest $H \cdots C$ contact of 2.85 Å.

Related literature

For background literature and synthesis details, see: Ulven & Kostenis (2006); Urrutia & Rodriguez (1999).

Experimental

Crystal data

C ₁₄ H ₁₅ NO ₂	V = 551.38 (6) Å ³
$M_r = 229.27$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 9.3781 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 6.1467 (4) Å	$T = 180 { m K}$
c = 10.5740 (7) Å	$0.50 \times 0.50 \times 0.40 \text{ mm}$
$\beta = 115.232 \ (2)^{\circ}$	

Data collection

Bruker-Nonius X8 APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.812, \ T_{\max} = 0.964$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	1 restraint
$wR(F^2) = 0.080$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
1485 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
154 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1A \cdots C1^{i}$	0.88	2.72	3.527 (2)	154
C14—H14A···C12 ²	0.99	2.85	3.518 (3)	126

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z$; (ii) $-x + 1, y + \frac{1}{2}, -z + 1$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2088).

References

Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Ulven, T. & Kostenis, E. (2006). Curr. Top. Med. Chem. 6, 1427-1444. Urrutia, A. & Rodriguez, J. G. (1999). Tetrahedron, 55, 11095-11108.

supplementary materials

Acta Cryst. (2009). E65, o579 [doi:10.1107/S1600536809005558]

1,2-Dihydrospiro[carbazole-3(4H),2'-[1,3]dioxolane]

J. V. Bjerrum, T. Ulven and A. D. Bond

Comment

The title compound is useful as an intermediate in the synthesis of antagonists of the prostaglandin D_2 receptor CRTH2 (DP₂) (Ulven & Kostenis, 2006).

Experimental

The compound was synthesized as described in Urrutia & Rodriguez (1999).

Refinement

H atoms bound to C atoms were placed in idealized positions with C—H = 0.95 or 0.99 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The methyl group was allowed to rotate about its local threefold axis. The H atom of the NH group was visible in a difference Fourier map but was placed geometrically and refined as riding for the final cycles of refinement with N—H = 0.88 Å and $U_{iso}(H) = 1.2U_{eq}(N)$. In the absence of significant anomalous scattering, 1128 Friedel pairs were merged as equivalent data.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids shown at 50% probability for non-H atoms.

Fig. 2. Projection along b showing interactions between carbazole units (*e.g.* about the origin), and between dioxolane rings and carbazole units (*e.g.* at the centre of the unit cell). H atoms are omitted.

1,2-Dihydrospiro[carbazole-3(4H),2'-[1,3]dioxolane]

Crystal	data
---------	------

$C_{14}H_{15}NO_2$	$F_{000} = 244$
$M_r = 229.27$	$D_{\rm x} = 1.381 {\rm Mg m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

supplementary materials

Hall symbol: P 2yb *a* = 9.3781 (6) Å b = 6.1467 (4) Åc = 10.5740 (7) Å $\beta = 115.232 \ (2)^{\circ}$ V = 551.38 (6) Å³ Z = 2

Data

Data collection	
Bruker–Nonius X8 APEXII CCD diffractometer	1485 independent reflections
Radiation source: fine-focus sealed tube	1427 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.017$
T = 180 K	$\theta_{max} = 28.4^{\circ}$
Thin–slice ω and ϕ scans	$\theta_{\min} = 3.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -12 \rightarrow 12$
$T_{\min} = 0.812, \ T_{\max} = 0.964$	$k = -8 \rightarrow 8$
7776 measured reflections	$l = -11 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 0.0517P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1485 reflections	$\Delta \rho_{max} = 0.33 \text{ e} \text{\AA}^{-3}$
154 parameters	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Cell parameters from 5883 reflections $\theta = 2.4 - 28.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 180 KBlock, colourless $0.50 \times 0.50 \times 0.40 \text{ mm}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.23032 (12)	0.56670 (18)	0.55448 (11)	0.0256 (2)
O2	0.36610 (11)	0.26085 (18)	0.56040 (10)	0.0238 (2)
N1	0.10724 (14)	-0.0286 (2)	0.12685 (12)	0.0259 (3)
H1A	0.0579	-0.1545	0.1083	0.031*
C1	0.17592 (15)	0.0682 (3)	0.04893 (14)	0.0240 (3)
C2	0.18695 (18)	-0.0023 (3)	-0.07194 (15)	0.0321 (3)
H2A	0.1415	-0.1362	-0.1153	0.038*
C3	0.2665 (2)	0.1299 (4)	-0.12652 (16)	0.0373 (4)
НЗА	0.2752	0.0863	-0.2092	0.045*
C4	0.3344 (2)	0.3267 (3)	-0.06233 (18)	0.0368 (4)
H4A	0.3891	0.4134	-0.1017	0.044*
C5	0.32330 (18)	0.3972 (3)	0.05741 (15)	0.0296 (3)
H5A	0.3694	0.5312	0.1000	0.036*
C6	0.24301 (15)	0.2675 (3)	0.11475 (13)	0.0223 (3)
C7	0.21109 (15)	0.2855 (2)	0.23567 (13)	0.0206 (3)
C8	0.25187 (17)	0.4636 (2)	0.34150 (14)	0.0229 (3)
H8A	0.1820	0.5900	0.3001	0.027*
H8B	0.3620	0.5107	0.3687	0.027*
C9	0.23321 (15)	0.3857 (2)	0.47164 (14)	0.0202 (3)
C10	0.08364 (15)	0.2549 (3)	0.43550 (14)	0.0235 (3)
H10A	-0.0086	0.3484	0.3823	0.028*
H10B	0.0775	0.2110	0.5231	0.028*
C11	0.07498 (17)	0.0513 (2)	0.34942 (15)	0.0249 (3)
H11A	0.1428	-0.0641	0.4112	0.030*
H11B	-0.0347	-0.0034	0.3056	0.030*
C12	0.12847 (15)	0.1046 (2)	0.23882 (13)	0.0217 (3)
C13	0.39081 (17)	0.6225 (3)	0.63924 (16)	0.0275 (3)
H13A	0.4055	0.6671	0.7340	0.033*
H13B	0.4255	0.7426	0.5965	0.033*
C14	0.48246 (17)	0.4138 (3)	0.64530 (17)	0.0303 (3)
H14A	0.5615	0.4393	0.6079	0.036*
H14B	0.5372	0.3606	0.7427	0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0236 (5)	0.0230 (5)	0.0319 (5)	0.0007 (4)	0.0134 (4)	-0.0055 (4)
O2	0.0198 (4)	0.0193 (5)	0.0280 (5)	0.0008 (4)	0.0061 (4)	0.0010 (4)
N1	0.0248 (6)	0.0226 (6)	0.0263 (6)	-0.0051 (5)	0.0071 (5)	-0.0031 (5)
C1	0.0195 (6)	0.0260 (7)	0.0206 (6)	0.0007 (5)	0.0029 (5)	0.0009 (5)
C2	0.0297 (7)	0.0371 (9)	0.0223 (6)	0.0005 (7)	0.0042 (5)	-0.0049 (6)
C3	0.0367 (8)	0.0505 (11)	0.0229 (6)	0.0035 (8)	0.0110 (6)	0.0002 (7)
C4	0.0379 (8)	0.0461 (10)	0.0293 (7)	-0.0009 (8)	0.0171 (7)	0.0055 (7)
C5	0.0315 (7)	0.0307 (7)	0.0266 (6)	-0.0033 (7)	0.0123 (6)	0.0037 (6)

supplementary materials

<i></i>	0.0000 (5)	0.0001 (0)	0.0000	0.0010 (5)	0.0040(5)	0.0001 (5)
C6	0.0200 (5)	0.0221 (6)	0.0209 (6)	0.0013 (5)	0.0049 (5)	0.0021 (5)
C7	0.0188 (5)	0.0195 (6)	0.0217 (6)	0.0003 (5)	0.0069 (5)	0.0024 (5)
C8	0.0271 (6)	0.0168 (6)	0.0263 (6)	-0.0022 (5)	0.0130 (5)	0.0012 (5)
C9	0.0192 (5)	0.0169 (6)	0.0251 (6)	0.0009 (5)	0.0100 (5)	-0.0009 (5)
C10	0.0191 (6)	0.0245 (7)	0.0283 (6)	-0.0021 (5)	0.0113 (5)	0.0002 (6)
CII	0.0246 (6)	0.0212 (7)	0.0303 (7)	-0.0056 (5)	0.0128 (5)	-0.0005 (5)
C12	0.0186 (5)	0.0195 (6)	0.0239 (6)	-0.0004 (5)	0.0062 (5)	0.0009 (5)
C13	0.0284 (7)	0.0233 (7)	0.0283 (6)	-0.0032 (6)	0.0099 (6)	-0.0020 (5)
C14	0.0227 (6)	0.0304 (8)	0.0323 (7)	-0.0011 (6)	0.0065 (6)	-0.0065 (6)
Geometric para	umeters (Å, °)					
O1—C9		1.4234 (17)	С7—	-C12	1.1	3639 (19)
O1—C13		1.4270 (17)	С7—	-C8	1.4	4936 (19)
O2—C9		1.4233 (16)	C8—	-C9	1.	5358 (18)
O2—C14		1.4303 (18)	C8—	-H8A	0.5	990
N1—C1		1.3785 (19)	C8—	-H8B	0.9	990
N1-C12		1.3822 (18)	С9—	-C10	1.	5177 (18)
N1—H1A		0.880	C10-	C11	1.	529 (2)
C1—C2		1.395 (2)	C10-	H10A	0.	990
C1—C6		1.417 (2)	C10-	-H10B	0.	990
C2—C3		1.384 (3)	C11-	C12	1.4	4922 (18)
C2—H2A		0.950	C11-	H11A	0.	990
C3—C4		1.400 (3)	C11-	-H11B	0.	990
С3—НЗА		0.950	C13-	C14	1.	530 (2)
C4—C5		1.383 (2)	C13-	-H13A	0.	990
C4—H4A		0.950	C13-	-H13B	0.	990
C5—C6		1.400 (2)	C14-	H14A	0.	990
C5—H5A		0.950	C14-	-H14B	0.	990
C6—C7		1.4364 (18)				
C9—O1—C13		106.42 (10)	02—	-C9C10	10	9.62 (11)
C9—O2—C14		106.18 (11)	01—	-C9C10	10	08.13 (11)
C1—N1—C12		108.84 (12)	02—	-C9C8	11	0.90 (10)
C1—N1—H1A		125.6	01—	-C9C8	11	0.32 (11)
C12—N1—H1A		125.6	C10-	C9C8	11	2.68 (11)
N1—C1—C2		130.52 (15)	С9—	-C10—C11	11	3.10 (11)
N1—C1—C6		107.60 (12)	С9—	-C10—H10A	10	9.0
C2—C1—C6		121.87 (14)	C11-		10	9.0
C3—C2—C1		117.59 (16)	С9—	-C10—H10B	10	9.0
С3—С2—Н2А		121.2	C11-		10	9.0
C1—C2—H2A		121.2	H104	A—C10—H10B	10	07.8
C2—C3—C4		121.30 (15)	C12-		10	9.68 (12)
С2—С3—НЗА		119.3	C12-		10	9.7
С4—С3—НЗА		119.3	C10-		10	9.7
C5—C4—C3		121.20 (16)	C12-		10	9.7
С5—С4—Н4А		119.4	C10-		10	9.7
С3—С4—Н4А		119.4	H114	A—C11—H11B	10	08.2
C4—C5—C6		118.84 (16)	С7—	-C12—N1	10	9.75 (12)
C4—C5—H5A		120.6	С7—	-C12—C11	12	25.61 (13)

С6—С5—Н5А	120.6	N1-C12-C11	124.58 (13)
C5—C6—C1	119.19 (13)	O1—C13—C14	104.37 (12)
C5—C6—C7	134.15 (14)	O1—C13—H13A	110.9
C1—C6—C7	106.65 (12)	C14—C13—H13A	110.9
C12—C7—C6	107.16 (13)	O1—C13—H13B	110.9
C12—C7—C8	123.08 (12)	C14—C13—H13B	110.9
C6—C7—C8	129.75 (12)	H13A—C13—H13B	108.9
С7—С8—С9	110.64 (11)	O2—C14—C13	105.08 (11)
С7—С8—Н8А	109.5	O2-C14-H14A	110.7
С9—С8—Н8А	109.5	C13—C14—H14A	110.7
С7—С8—Н8В	109.5	O2-C14-H14B	110.7
С9—С8—Н8В	109.5	C13—C14—H14B	110.7
H8A—C8—H8B	108.1	H14A—C14—H14B	108.8
O2—C9—O1	104.87 (11)		
C12—N1—C1—C2	179.41 (15)	C13—O1—C9—O2	36.02 (13)
C12—N1—C1—C6	0.36 (15)	C13—O1—C9—C10	152.93 (12)
N1—C1—C2—C3	-178.93 (15)	C13—O1—C9—C8	-83.44 (13)
C6—C1—C2—C3	0.0 (2)	C7—C8—C9—O2	79.85 (14)
C1—C2—C3—C4	0.4 (3)	C7—C8—C9—O1	-164.41 (11)
C2—C3—C4—C5	-0.6 (3)	C7—C8—C9—C10	-43.46 (16)
C3—C4—C5—C6	0.3 (3)	O2—C9—C10—C11	-64.65 (14)
C4—C5—C6—C1	0.2 (2)	O1-C9-C10-C11	-178.44 (11)
C4—C5—C6—C7	178.70 (16)	C8-C9-C10-C11	59.37 (16)
N1-C1-C6-C5	178.86 (13)	C9-C10-C11-C12	-42.89 (16)
C2—C1—C6—C5	-0.3 (2)	C6C7C12N1	0.49 (15)
N1—C1—C6—C7	-0.06 (15)	C8-C7-C12-N1	179.18 (12)
C2—C1—C6—C7	-179.21 (13)	C6-C7-C12-C11	177.82 (13)
C5—C6—C7—C12	-178.94 (16)	C8-C7-C12-C11	-3.5 (2)
C1—C6—C7—C12	-0.27 (14)	C1—N1—C12—C7	-0.54 (15)
C5—C6—C7—C8	2.5 (3)	C1—N1—C12—C11	-177.90 (13)
C1—C6—C7—C8	-178.84 (13)	C10-C11-C12-C7	16.12 (19)
C12—C7—C8—C9	16.67 (18)	C10-C11-C12-N1	-166.94 (12)
C6—C7—C8—C9	-164.96 (13)	C9-01-C13-C14	-22.68 (15)
C14—O2—C9—O1	-34.81 (13)	C9—O2—C14—C13	20.17 (14)
C14—O2—C9—C10	-150.69 (12)	O1—C13—C14—O2	1.51 (16)
C14—O2—C9—C8	84.26 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N1—H1A···C1 ⁱ	0.88	2.72	3.527 (2)	154	
C14—H14A···C12 ⁱⁱ	0.99	2.85	3.518 (3)	126	
Symmetry codes: (i) $-x$, $y-1/2$, $-z$; (ii) $-x+1$, $y+1/2$, $-z+1$.					

Fig. 2